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Abstract

The rigorous solutions of the stationary Schrédinger equation {or hydrogen atom are solved with the wave-mechanics

method within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. The “Fourier-like”

projection transformations of wave function from the phase space to position and momentum spaces are extended to three-dimensional sys-

tems. The eigenfunctions in general position and momentum spaces could be obtained through the transformations from eigenfunction in

the phase space.
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Since the first quantum phase-space distribution
function was introduced by Wignerm in 1932, a vari-
ety of phase-space theories for quantum mechanics
have been proposed[z’S] and extensive uses have been
found in many areas of physics and chemistry[4_6].
The quantum phase-space theory can be used to de-
scribe the dynamical and statistical properties of phys-
jcal system, and compare quantum mechanics for fi-
nite % with classical mechanics for % goes to zerol’.
However, when persons want to consider position and
momenturn simultaneously in quantum mechanics,
caution is required due to the Heisenberg uncertainty

principle.

It is the most direct way for introducing phase-
space representations of quantum mechanics to define
quantum phase-space distribution functions. So far,
the quantum phase-space distribution function used
mostly in physics and chemistry is still the Wigner
distribution functiont"”}, which is called quasi-proba-
bility distribution function. There have been many
attempts to improve the inadequacy that the Wigner
distribution function is not always positive in phase
spacel > 8.

In addition, one can also define directly the
quantum  state functions and  corresponding
Schradinger equations in phase space. Then, almost

all the mathematical properties in the general position
or momentum representation of quantum mechanics
are retained for quantum state functions in phase
space, and a variety of useful methods and results can
be replanted to phase-space representation. This idea
is reflected in the quantum phase-space theory estab-
lished by Torres-Vega and Frederick (T-F)I100 ip
the 1990s. The principle operators of dynamic vari-
ables and the Schrédinger equations are defined di-
rectly in T-F phase-space representation, and the
phase-space wavefunctions are determined by the
Schradinger equations are solved. The mean values of
dynamic variables may be computed just as those in
general position or momentum space[m. The {ounda-
tion of theory was based on the assumption that there
exists a set of complete base functions, I'( g, p), and
any quantum state | %) can be represented as

(Clq, p) | W) = ¥(q, p), (1)
while the principle operators Q and P may be directly
represented in the phase space as

A9 .9
Q"2+lapa (2)
5 _ D .0
P—2 1aq. (3)

Although this representation coincides with the totali-

ty of coherent state representations for the Heisen-

[12]

berg-Weyl group''“, its advantage consists in the fact
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that there exist the similar formulas to those in gener-
al position or momentum representation of quantum
mechanics. Especially the time-evolution equation of
the wavefunction ¥ (q, p) in the phase space is simi-
lar to the Schrédinger equation, i.e.,

e
la_tq,(QsPst) =

[%(«g——ia@q)2+ v(gﬁa@pﬂ CW(q,pit).
(4)

Since the T-F phase-space representation of
quantum mechanics was proposed, a variety of ad-
vances in the theory[lz’ls] have motivated a new wave
of interest in the applications to atomic and molecular

systems[“_lﬁ]. Torres-Vega and Frederick have
treated the harmonic oscillator in the phase
space[g'm]. Moller et al. have considered a set of so-

lutions to the stationary Schrédinger equation of the
linear potential in the phase space, and discussed the
possibilities and limitations of doing wave mechanics
121 'Huy et al. have obtained the
rigorous solutions of Morse oscillator in the phase

space[m

in the phase space

. And then, we have also obtained the rigor-
ous solutions of a particle in delta potential fields'!?!
and one-dimensional hydrogen atom!'®), and dis-
cussed the vibration theory of diatomic molecules with
an empirical potential function in the quantum phase-
space representation[l(’] .

In quantum mechanics, the relatively few poten-
tial-energy functions V (r) for which analytic solu-
tions of the Schrédinger equation are possible are im-
portant beyond these immediate problems, since they
offer serve as bases for approximate calculations on
more complicated system!'” ). But in the phase
space, the double number of variable for a physical
system and the first derivative terms in either position
or momentum operator makes the mathematical equa-
tions and the wave functions much more complicated
in form than those in general position or momentum
space. This is just the reason that, so far, we can on-
ly treat the one-dimensional systems in T-F phase-
space representation.

It is generally impossible to obtain analytic solu-
tions of the three-dimensional stationary Schrodinger
equation (wave equation) unless it can be separated
into total differential equations in each of the three
space coordinates. If the potential energy is spherical-
ly symmetric, sothat V(r)= V(r) is a function on-
ly of the magnitude r of r measured from some ori-

gin, the wave equation can always be separated in
spherical coordinates. Many problems of physical in-
terest can be represented exactly or approximately in
terms of spherically symmetric potentials of various

shapes.

The hydrogen atom is the simplest atomic sys-

. 1 .
tem. Its potential energy V{(r) = — s which repre-

sents the attractive coulomb interaction between an
atomic nucleus and an electron, provides a wave equa-
tion that can be solved analytically. This problem is
of direct physical interest, since apart from relativistic
effects, the calculated energy eigenvalues are in a-
greement with the observed energy levels of the hy-

a7l Hence, it is valuable to solve the

drogen atom
stationary Schrodinger equation of hydrogen atomic

system in phase space.

1  Analytic solution of hydrogen atom in
phase space

In the hydrogen-atom problem, the potential en-
ergy V(r) is spherically symmetric, and does not de-
pend on the time. The corresponding stationary state
Schrédinger equation for the system is

2

B— + V(r)}rr = EV, (5)

where E <0 for a bound state. The position and mo-
mentum variables may be written in rectangular coor-
dinates:

r=xi+ y + zk,

p=pitpj+opk,

then

2 2 2 2
PT=pL L+ b

In T-F quantum phase-space representation, the
position and momentum operators can be written as

the canonical form[g'lo], i. e.,
z—>X = §+i£,
y—>Y = %+ia%,
A §+i£, (6)
p,—>P, = % ia%,
by Py =i 2
pop= b2 (7)
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then Eq. (5) becomes
1 - b st e
[E“’i +P2+ P+ V(X' Y, Z >]\If(r,p)

= E¥(r,p). (8)
If the following relations

z i n ixh. B n -~
2 +‘ap,r) - exp zp)(laz exp 'lr;I ’
y,.0\" ivp, | [. 0" iyp
(2 “apy) x| )(‘apy el =)
=z . o\" izp (.a" izp
+ = = -~ z
2 Iapz) exp ) lapz exp| — ) ,
are used, it is easy to prove
VX', Y,Z")
= exp —w—z-z)V(X,Y,Z)exp 1"_22),
(9)
here we define:
_ .0 _ . O
X—I+18p1’ Y—y+lapy,
_ .. 9
Z - < + lapz.
With the help of the relations
[&#.@ S ;rpl)( RN ixp_,)
2 lor Pim arl P\
by g) _ wv)(,@)” Lpl)
(2 _lay = exp| — ) lay exp A
P 2| Lo _1:;192)(_1 ”exp izp,
2 oz 2 o 2 0
and Eq. (9), as well as the transformation of wave
function

V(r,p) = exp

SIPla(x, v, Zip),

2
(10)

Eq. (8) can be rewritten as follows:
12> & o), . ,
[- E(a—xE tay Tagl P VD 2]

Q(X,Y,Z;p) = EQ(X,Y,Z;p).

(11)
It should be noted that X, Y, and Z are differential
operators, and do not commute with p. In the pre-

sent paper, X, Y, and Z will be regarded as sym-
bolic variables of wave function 2(X, Y,Z;p), and
always written in the front of p. Then X, Y, and Z
will be treated as differential operators after the solu-
tions of Eq. (11) have been obtained. We define that
a9 9
5x* oy’ Moz
only to varlables X, Y, and Z respectively. It can

represent evaluating the derivative

be proved that

0o _ o9 9o

_ _ 9 d _ 2
X ~ar’ dY oy T oz

Rl

that there are 11 coordi-
nates systems in which the free particle wave equation
(with V =0) can be separated. One of the most im-
portant of these is the spherical polar coordinate sys-

It has been shown!?")

tem, in terms of which the rectangular coordinates
are given by
x = rsinfeosp, y = rsinfsing, = = rcosf.
In the phase space, the canonical coordinates can sim-
ilarly be written as
X = Rsin@®cos®, Y = Rsin@sind,
Z = Rcos®.
Then Eq. (11) can be written in spherical coordi-

nates

sin® @)

{_L[L@( 2@)+ 1
2LR%*6R B8R/ RZ%in® a@
2

R—Zs;% i&] + V(R)}.Q(R,@, d;p)

= EQ(R,0,®;p). (12)
Separating the radial and the angular parts by substi-
tuting

2(R,0,D;p) =
(L =0,1,2,

1
—u(R;p)xlm(@, D;p),

vand m = 1,1 — - 1)
(13)

into Eq. (12), we obtain a radial equation

’u(R;p) ;_1(1+1)
(Rapdy [op v - HLP Jurip) =0
(14)
and an angular equation
1 7) 1 9*
ljsm@ oG sin® e/ sin2® od°

+ 101+ 1)];(,,"(@,@5;,1) =0. (15)

The angular equation (15) can be further separated
by substituting
Y (B, ®35p) = v(O;p)w(P;p)  (16)

into it and following the same procedure to obtain

raslsine G| + 1D - A Tloop)

=0, (17)

w(®;p) = 0. (18)

2
( % + m

oD
For Egs. (14), (17) and (18), we should pay atten-
tion to that R, @, and @ are differential operators

and, therefore, do not commute with p. We set that
R, ®, and @ are always in the front of p.

We first attempt to solve the radial equation
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(14). Considering the property of the equation and
the boundary condition of the wave functions, i.e.,
u(R,p)=u(r, p) should be finite when r—> or
p=1pl—=, we select an attempted solution as

u(R;p) = R™Mexp(- BR)w(R;p), (19)
where B = v —2E. Inserting it into Eq. (14) and
putting & = 28R, we obtain a confluent hyperge-
ometric equation for variable &, 1. e.,

2
sa—ﬂaﬁﬂﬂzuﬂ%e]ﬂiﬁ

L+ -Lh =0 Qo

B
If w(&, p) is expanded in a series about &, i. e.,
w(&,p) = D 6C,(p), (21)
i=0

the solutions of Eq. (20) satisfying the boundary
conditions that w (&, p) should be finite when r—o0
or p—> should be

w(&,p) = F(-n+1+1,2l +2;8)C(p)

(n =1,2,3,:), (22)
where F(—n+{+1,2/ +2;£) is a confluent hyper-
geometric series, and C(p) may be an arbitrary rea-
sonable function satisfying the following condition:

dj
—C )~ r=0,1,2,-).(23
jpdpdpj(p <o (5 ). (23)
The energy eigenvalues are given by = / —2E =
1

n

, 1. €.,

1
E, = —3.
" 2n’
and the corresponding solutions of the radial equation
(14) are

1
uy (R;p) =& exp| — 3&‘)

“F(=n+1+1,21+2;6)C(p).
(25)

(24)

In a similar way, we can obtain the solutions of
two angular equations (17) and (18) respectively.
The results are

vlm(@’p)
w,, (P,p)

P (cos®)C’'(p), (26)
exp(im®@)C"(p), (27)

il

where P (cos®) is the associated Legendre function,
C’(p) and C"(p) the arbitrary reasonable functions
satisfying the following conditions:

7
[ ap Lol < o, (28)
»ldp
& .
jdp’—jc (p)l<oo. (29)
b dp

Therefore, we can write the eigenfunctions of
hydrogen atom in the phase-space representation as

follows:
1I/.nlm(r;p)
= exp| — "TB) [anElexp - %5)

cF(-n+1+1,21 +2;E)C(p)J

« [N,,,P/ (cos®)C'(p)]

- [N, exp(im®)C"(p)], (30)
where N,,, N,, and N, are the normalization con-
stants.

2 Discussion

The hydrogen-atom problem in the phase-space
representation gives rise to an infinite number of dis-

. 1
crete energy levels extending from — 5 up to zero,

and the energy eigenvalues in phase space [Eq. (24)]
are also in agreement with those in the position space.
This is easy to understand, because the values of dy-
namic variables are independent of mathematical rep-
resentation for a physical system.

In position representation, the energy eigenva-
lues of hydrogen atom depend only on » and so are
degenerate with respect to both / and 7. The degen-

eracy of energy level is n2. However, in the phase
space, there exist three arbitrary functions, C(p),
C’(p) and C”(p) of the momentum variable satisfy-
ing the condition Egs. (23), (28) and (29) respec-
tively. That is to say, there are at least as many solu-
tionsas C(p)C (p)C"(p), and if we use other
methods to solve the wave equation (8), maybe we
can find much more solutions. Hence the total degen-
erate of energy lever for the hydrogen atom system is
more than 7° in the phase space. The existence of de-
generate energy eigenvalues means that linear combi-
nations of the corresponding eigenfunctions are solu-
tions of the wave equation with the same energy. In
general, degeneracy will occur whenever the wave e-
quation can be solved in more than one way“”.
Therefore, it is reasonable to expect that other meth-
ods can be found to solve the wave equation (8).

Since position and momentum are now consid-
ered simultaneously in the phase space, the forms of
eigenfunctions must be uncertain to incorporate the
Heisenberg uncertainty principle. Although the wave
equation (8) seems to be defined by the choice of op-
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erators in equations (6) and (7), and there should be
the corresponding unique eigenfunction in the phase
space, as we know, the states of a physical system
are determined by the eigenequation and the corre-
sponding boundary conditions. For the wave equation
(8), the boundary conditions of momentum ( posi-
tion) part in the eigenfunction cannot be specified, if
those of position ( momentum) parts are completely
certain. The definite and unique solution will not be
in agreement with the uncertainty principle.

In general, the eigenfunction (30) is a compli-
cated function of variables r and p which cannot be
separated from each other. However, a kind of par-
ticular simple solution can also be found out, in which
the position and momentum parts can be separated.
For example, we put

3
C(p) = (2n) “explirg - p), (31)
C'(p)=C'(p) =1, (32)
where ry = xyi + yoj + 2k is the eigenvalue of posi-
tion operator. Although the integral in Eq. (23) does
not converge if taken over an infinite limit for Eq.
(31), we may think of the region of space in which
such a wave function is defined as being arbitrarily
large but finite, while the integral in Eq. (23) is over
the finite limit of this region and converges.

It is easy to prove
0,,(8,p)= N, P]'(cos®)C'(p)
= N, P/ {cosf),

w, (D, p)= exp(im®)C"(p)

1
J2x
= /12_exp(im¢),
7
o\ 2y 2 \*
l+‘8p)(y+‘8p 811.)‘3(”)
= (1——10)(y'—yo)(z‘*zoyc(p)
where i,7,£=0,1,2,, and
<C (P) { C (P)> = 8("0—"0)
if C'(p) and Cc’ (p) are defined as Eq. (32), and

C(p) as Eq. (31). Therefore, the corresponding
eigenfunction in the phase space is

‘Fnlm(r’p)
4
_ _ir-p)N (2"‘—1‘01)
exp( 2 nl n
| r - |
.eprLr_o)
n
Z‘r—*rol
CFlom+i+1,20 42—

NS08

X Ylm(ﬁ,go)(Zﬂ:)_ exp(iry = p), (33)

where Y, (6, 9) = N, P} (cosf) éexp(imgp) is
n

the spherical harmonic. Here the position and mo-

for the phase factor exp | — U'_zg

For the ground state, n =1

mentum parts have been sep,arateﬁ completely except

, there is only a sin-
gle node at the point of r = r in the radial wave func-
tion. We must have [ =0 and m = 0 for this state.
Therefore, the eigenfunction in the phase space, Eq.
(33), will become

Vi0(r, p)

_T/%?exp(:—\ r—ryl- 2( =2ry) * ]
(34)
By means of the ground-state eigenfunction, Eq.
(34), we can obtain the distribution probability of
radial position for the electron, i.e., the probability
for finding the electron in the ball-shell (| r — ry |,

lr—ryl +dlr—ryl), as follows:

e, p)dlr—ryl

=(r—r)dir—ryl de | W0(r,p) 17

Il

%(r—ro)zexp(~2\r~r0\)d\rAr0|.

(35)

Then, by solving the following equation

d\r—iri(’wo(”ﬂ’) =0, (36)
we can also find the point where the probability den-
sity will be the maximum value in the phase space.
The maximum-value point is

(Bohr radius) . (37
This is exactly where the first Bohr orbit occurs in the
eatly quantum theory. Clearly, these results are in a-

lr—ryl=1

greement with those in position representation.

For position and momentum representations, a
geometrical picture that is often used regards a wave
function ¥ as a state vector in an infinite-dimensional
Hilbert space. A particular state vector has different
components when referred to as corresponding axes,
and these constitute the corresponding representations
of the state. Different choices for the orientation of
the axes in the Hilbert space correspond to different
choices for the representation, and a transformation
from one representation to the other corresponds to a
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rotation of axes in the Hilbert space. However, for
the phase-space representation, there are two vari-
ables, ¢ and p, in the wave function. The transfor-
mation of wave function between the phase-space rep-
resentation and position or momentum representation
is a kind of “Fourier-like” projection transforma-

(9~11] "It is obvious that the inverse transforma-

tion
tion of “Fourier-like” projection transformation is not
unique. This exhibits that the phase-space eigenfunc-

tion is not unique.

The one-dimensional treatment is readily extend-
ed to three dimensions. It is natural to rewrite the
“Fourier-like” projection equations as

ir-p
Sl)m’m(r) :J dpexp 2 )Wrilnz(rip)a (38)
»

ir 2'_11) v, (r,p).

$m(p) = errexp
(39)

If we project the phase-space eigenfunction (33) into
position or momentum space through Eq. (38) or
Eq. (39), we should obtain the unique eigenfunction
in the corresponding space respectively, since the
eigenfunction and the boundary conditions are com-
pletely certain in position or momentum space. The
result for position space is

Gum (r) = N (Zi)lexp - =
nim nl n n
. F(, n+1l+1,21 +2;2—r)Ym(0,§D),
n
(40)
and that for momentum space is
L
$im (P) =Jdrexp(~ ir - p)N,, 2,,—r
'exp(—L)F(-n +Z+l,2[+2;2—r
n n
' Ylm(e’gp)’ (41)

in which the follow formula has been used:

“ 1 .
| _dp, pexpings,)

L2 1
dp,] 7 &P

= lim
L—>co —L/Z

where =x,y,2 and j =0, £1, £2,---. It is obvi-
ous that Eqs. (40) and (41) are the same as the
eigenfunctions obtained in position and momentum
space, respectively.

o
%&J =3, 4, (42)

References

10

11

12

13

14

15

16

17

18

19

20

Wigner E. P. Quantum corrections for thermodynamic equilibri-
um. Phys. Rev., 1932, 40: 749—759.

Husimi K. Some formal properties of the density matrix. Proc.
Phys. Math. Soc. Japan, 1940, 22: 264—271.

Glauber R. J. The quantum theory of optical coherence. Phys.
Rev., 1963, 130: 2529—2535.

Glauber R. J. Quantum Optics and Electronics. New York: Gor-
don and Breach, 1965.

Carruthers P. and Zachariasen F. Quantum collision theory with
phase-space distributions. Rev. Mod. Phys., 1983, 55: 245—
268.

Schréeck F. E. Jr. Quantum Mechanics on Phase Space. Dor-
drecht: Kluwer Academic Publisher, 1996.

Hillery M., O’ Connel R. F., Scully M. O., et al. Distribution
functions in physics: fundamentals. Phys. Rep., 1984, 106:
121—147.

Klauder J. R. and Skagerstum B. S. Coherent States. Singapore:
World Scientific, 1985.

Torres-Vega G. and Frederick J. H. Quantum mechanics in phase
space: New approaches to the correspondence principle. J. Chem.
Phys., 1990, 93: 8862—8874.

Torres-Vega G. and Frederick J. H. A quantum mechanical repre-
sentation in phase space. J. Chem. Phys., 1993, 98. 3103—
3120.

Li Q. S. and Hu X. G. On the quantum mechanical representation
in phase space. Phys. Scripta, 1995, 51: 417—422,

Moller K. B., Jorgensen T. G., and Torres-Vega G. On coher-
ent-state representations of quantum mechanics: Wave mechanics in
phase space. J. Chem. Phys., 1997, 106: 7228—7240.

Lu]., LiQ. S., and Sun Z. Rigorous solutions of particle in delta
potential fields in phase space. Phys. Chem. Chem. Phys. (PC-
CP), 2001, 3. 1022—1026.

Hu X. G. and Li Q. S. Morse oscillator in a quantum phase-space
representation: Rigorous solutions. J. Phys. A: Gen. Math.,
1999, 32: 139—146.

LiQ. S. and Lu J. One-dimensional hydrogen atom in quantum
phase-space representation: Rigorous solutions. Chem. Phys.
Lett., 2001, 336: 118—122.

Li Q. S. and LuJ. Rigorous solutions of diatomic molecule oscilla-
tor with empirical potential function in phase space. ]J. Chem.
Phys., 2000, 103: 4565—4571.

Schiff L. 1.
1968.

Liu W. M., WuB., and Niu Q. Nonlinear Effects in Interference
of Bose-Einstein Condensates. Phys. Rev. Lett., 2000, 84:
2294—2297.

Liang Z. X., Zhang Z. D., and Liu W. M. Dynamics of a Bright
Soliton in Bose-Einstein Condensates with Time-Dependent Atomic
Scattering Length in an Expulsive Parabolic Potential. Phys. Rev.
Lett., 2005, 94: 050402.

Pauling L. and Wilson E. B. Jr. Introduction to Quantum Me-
chanics. New York: McGraw-Hill, 1935.

Quantum Mechanics. New York: McGraw-Hill,



